ROCK ANCHORS – THEN AND NOW

Dr. Donald A. Bruce

GEOSYSTEMS, L.P.
(724) 942-0570
1. Background
2. Geotechnical Design
3. Construction
 3.1 Drilling
 3.2 Water Pressure Testing
 3.3 Grouting
 3.4 Tendon
4. Stressing and Testing
5. As-Built Records
6. Overview
1. **Background**

- Large dam, Pacific Northwest
- 142 vertical anchors installed in 1975, to resist sliding
- “Button head” wire tendons, total length 55 to 168 feet.
- Design Working Load 205 to 1490 kips
- Long term performance monitored via 4-wire “minitendons”
- Original records available, permitting comparison with current PTI (1996) Recommendations
2. Geotechnical Design

Then:
- Uniform bond distribution
- $T_w = 100$ to 130 psi
- “Volume of rock cone” theory for overall stability
Now: Exactly the Same!

However...
Anchor Design Approach from Piling

Ultimate load = Ultimate bond stress × Bond area

Bond area = \(\pi \times \text{Diameter} \times \text{Bond length} \)

\[\text{therefore}\]

Ultimate load \(\propto\) Bond length
Normal Anchor Design

Stress distribution of a simple design approach

Ultimate load = $\pi \times d \times L \times \tau_{ult}$

This means load \propto fixed length

This is not a true statement.
Actual normal anchor load distribution during loading
Distribution of anchor efficiency with fixed length showing best fit curve (Barley, 1995)

\[f_{\text{eff}} = 1.6L^{-0.57} \]
Comparison of the load distribution of a normal anchor with that of an early single bore multiple anchor.
Normal 10 m anchor capacity vs. 10 m Multiple anchor capacity comprising four 2.5 m units

10-m Efficiency factor = 0.43
2.5-m Efficiency factor = 0.95

Therefore, SBMA has

0.95/0.43 = 2.2 x normal anchor capacity in same borehole
Load distribution developed in a SBMA

Where ground Strength improves with depth

Realistic consideration from circa 1992
3.1 Drilling

Then:
- Diamond drilling in concrete
- Rotary or rotary percussive in rock
- Deviation monitoring (< 1 in 100)
- Pressure grouting
- Maintain full logs
3.1 Drilling

Now:

- Diamond drilling only for reinforced concrete or very weak structures
- Use down-the-hole hammer
 - Deviation control
 - Speed
 - Vibrations/pneumatic fracture
- MWD
Rock Drilling Methods

1. Rotary
 - High rpm, low torque, low thrust (blind or core)
 - Low rpm, high torque, high thrust

2. Rotary Percussive
 - Top Hammer
 - Down-the-hole Hammer
 - Direct circulation
 - Reverse circulation
 - Dual fluid drilling
 - Water hammers

3. Rotary Vibratory (Sonic)
Sonic Drilling: Advantages

- Can provide continuous, relatively undisturbed cores in soil (75-250 mm diameter) and rock
- Very high penetration rates
- Readily penetrates obstructions
- Depths to 150 m
- Can easily convert to other types of drilling
- No flush in overburden, minor amounts in rock
Circulation Type and Application

- Up-hole velocity (UHV) > “sinking velocity”
- \[\text{UHV (m/min)} = 1274 \times \text{Flush Pump Rate (Liters/min)} \]
 \[D^2 - d^2 \text{ (mm)} \]

where \(D \) = drill hole diameter (in mm)
\(d \) = drill string diameter (in mm)

- Typical UHV
 - Air, or air/water “mist”: 1500 m/s (max 2100 m/s)
 - Water: 36 m/s (max 120 m/s)
 - Low to medium viscosity mud: 30 m/s
 - Very thick mud: 18 m/s
 - Foam: 12 m/s

Sept 2003
OVERBURDEN DRILLING METHODS

Overburden is STABLE*

Solid Stem Auger
Open Hole (with Rock Drilling Methods)
Hollow Stem Auger
“Combination” Methods
Slurry Supported Methods

Overburden is UNSTABLE*

Cased Methods

Bentonite
Polymer
Self Hardening

HIGH —— Environmental —— LOW Concerns
LOW —— Presence of —— SEVERE Obstructions

LOW —— Presence of —— SEVERE Obstructions
LOW —— Technological Sophistication

VERY HIGH ——— Instantaneous Penetration Rate Potential ——— LOWER

*Stability refers to the overburden’s ability to maintain the shape and size of the drilled hole without detriment to the surrounding ground after withdrawal of the drilling system.
Circulation Type and Application (Continued)

- Air vs. Water – Rotary vs. Rotary Percussion
- Guideline for selection
 - Provide clean hole
 - Enhance penetration rate
 - Minimize tool wear
 - Consistent with purpose of hole
 - Minimal damage to formation and/or structures
 - Environmentally compatible
 - Reconsider options if “lost flush” occurs
Borehole Deviation

Potential for deviation depends on

- Nature of subsurface conditions
- Nature of surface conditions ("drill platform")
- Nature of drilling method and tooling
- Accuracy of initial drill set up
- Inclination and length of hole
- Expertise and technique of driller
- Nature and length of guide casing
- Use of special stabilizing devices

Note: Different deviations are acceptable depending on project requirements and technique.
Table 2. Summary of recorded drill hole deviations from more recently published data

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>APPLICATION</th>
<th>METHOD</th>
<th>RECORDED DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce (1989)</td>
<td>Dam anchors in rock and concrete</td>
<td>Down-the-hole hammer and rotary</td>
<td>Target 1 in 60 to 1 in 240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mainly 1 in 100 or better achieved</td>
</tr>
<tr>
<td>Bruce and Croxall (1989)</td>
<td>Deep grout holes in fill</td>
<td>Double head Duplex</td>
<td>Achieved 1 in 50 to 1 in 1000 (average 1 in 80)</td>
</tr>
<tr>
<td>BS 8081 (1989)</td>
<td>Ground anchors</td>
<td>General</td>
<td>1 in 30 “should be anticipated”</td>
</tr>
<tr>
<td>Houlbsby (1990)</td>
<td>Grout holes in rock</td>
<td>Percussion</td>
<td>Up to 1 in 10 at 60 m</td>
</tr>
<tr>
<td>Weaver (1991)</td>
<td>Grout holes in rock</td>
<td>Down-the-hole hammer</td>
<td>1 in 100 increasing to 1 in 20 with increasing depth (70 m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Dry Drilled Percussion”</td>
<td>1 in 6</td>
</tr>
<tr>
<td>Bruce et al. (1993)</td>
<td>Dam anchors in rock and concrete</td>
<td>Down-the-hole hammer</td>
<td>Target 1 in 125: consistently achieved as little as 1 in 400</td>
</tr>
<tr>
<td>Xanthakos et al. (1994)</td>
<td>General in soil</td>
<td>Drive Drilling</td>
<td>Up to 1 in 14</td>
</tr>
<tr>
<td>Kutzner (1996)</td>
<td>Grout holes in rock</td>
<td>Percussion</td>
<td>Up to 1 in 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Down-the-hole</td>
<td>Up to 1 in 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotary Blind</td>
<td>Up to 1 in 33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotary Core</td>
<td>Up to 1 in 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wireline Core</td>
<td>Up to 1 in 200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal holes in soil</td>
<td>“Unavoidable”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percussive Duplex</td>
<td>Less than 1 in 100</td>
</tr>
<tr>
<td>PTI (1996)</td>
<td>Tiebacks</td>
<td>General statement</td>
<td>Up to 1 in 30 normally acceptable</td>
</tr>
<tr>
<td>FHWA (1999)</td>
<td>General</td>
<td>High Speed Rotary</td>
<td>2 to 5 in 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Top Drive Percussion</td>
<td>< 5 to 20 in 100 depending on depth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Down-the-hole hammer</td>
<td>Typically 1 to 2 in 100</td>
</tr>
</tbody>
</table>
Measurement of Deviation

- Not routinely conducted
- Real time vs. retrospective
- Various principles
 - Optical
 - Photographic
 - Magnetic
 - Gyroscopic
- Scope for “project-specific” adaptations
Recording of Drilling Progress and Parameters

- Value of real time continuous monitoring for design purposes (manual vs. automatic)
- Look for “exceptions and unexpecteds” [Weaver, 1991]
- Indication of progressive improvement (e.g., denser, less permeable conditions)
- Concept of specific energy
- Several generations/evolutions
Calculation of Specific Energy

\[e = \frac{F}{A} + \frac{2\pi N T}{A R} \]

where
\[e = \text{specific energy (kJ/m}^3) \]
\[F = \text{thrust (kN)} \]
\[A = \text{cross sectional area of hole (m}^2) \]
\[N = \text{rotational speed (revolutions/second)} \]
\[T = \text{torque (kN-m)} \]
\[R = \text{penetration rate (m/sec)} \]
3.2 Water Pressure Testing

Then:

- Full length
- 0.5 gpm at 60 psi
 (more typical 0.001 gal/inch diameter/ft/min at 5 psi)
- Very conservative criterion
3.2 Water Pressure Testing

Now:

- Knowledge of fissure control on permeability
- 2.5 gal at 5 psi excess
- Gravity grout

Graph showing water pressure testing criteria with different lines representing various standards and locations.
3.3 Grouting

Then:
- Proprietary non-shrink grout for first stage
- Water:cement ratio ≤ 0.45
- Pre-construction testing
- High speed, high shear mixer
- Tremie grout
3.3 Grouting

Now: **Same except:**

- No use of preblend cements
- Focus on fluid property testing
- Often single stage grouting
Trial Mixes

- Cement selection
- Compatibility with admixtures
- Minimize bleed
- Water:cement ratio
- Stability
Trial Batches

- Workability
 - Flow
 - Stability

- Measure Performance
 - Bleed
 - Density
 - Strength

- Mixing Time
 - Manufacturer’s Recommendations
 - \(\approx 4-5 \) Minutes
 - Mixer Optimization Process
3.4 Tendon

Then:

- Contractor selection
- Use of wire/button head
- No corrosion protection other than grout
3.4 Tendon

Now:
- Tendon specified
- No use of wire tendons
- Class 1 – Class 2 Corrosion Protection
- Use of epoxy coated strand
How to provide the needed Corrosion Protection?

- Extrusion Sheathed Strand
 - Complete filling of all Interstices with Corrosion Inhibitor – No Voids

- Epoxy Coated Strand
 - ASTM A-882, revised 2002
 - Coating is a barrier to corrosion,
 - If damaged, Local Galvanic Cell may occur

- Corrugated Outer Duct
 - Barrier to corrosion elements
 - Larger dia. duct is job site installed.
 - Larger dia. drill hole may be required.
How to provide the unbonded length?

- Sheath Extruded onto the Strand
 - Assured Corrosion Protection
 - High Force Transmission Efficiency

- Slipped on Tube Sheath
 - Larger accumulated diameter of anchor tendon bundle

- Two stage grouting – no sheath
 - Additional step of grouting after stressing
Corrosion Protection Decision Tree

Service Life

Temporary <24 Months
- Aggressive
 - Yes: Class 2
 - No: None

Permanent >24 Months
- Aggressive
 - Yes: Failure
 - Serious: Class 1
 - Non Serious: In Place Cost
 - Inexpensive: Class 1
 - Expensive: Class 2
Corrosion Protection Requirements

<table>
<thead>
<tr>
<th>CLASS</th>
<th>PROTECTION REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANCHORAGE</td>
</tr>
<tr>
<td>I ENCAPSULATED TENDON</td>
<td>1. TRUMPET</td>
</tr>
<tr>
<td></td>
<td>2. COVER IF EXPOSED</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>II GROUT PROTECTED TENDON</td>
<td>1. TRUMPET</td>
</tr>
<tr>
<td></td>
<td>2. COVER IF EXPOSED</td>
</tr>
</tbody>
</table>

Sept 2003
4. Stressing and Testing

Then:

- Progressive simple loading to 100% Design Working Load
- No cycling
- Lock off at $\leq 70\%$ GUTS
- Lift off test
- No creep test
4. Stressing and Testing

Now:
- Proof and Performance Tests
- Analysis of elastic data
- Creep test
- Lift off
- Lock off $\leq 60\%$ GUTS
Anchor Tests - General

1. Pre-production Tests
 Carried out on one or two anchors, to confirm the grout / ground bond stress assumed. These tests are carried out on non-production anchors.

2. Performance Tests
 Carried out on the first two to three anchors, plus a minimum of 2% thereafter, to confirm that the anchors meet the detailed design and specification. These tests are carried out on production anchors.

3. Proof Tests
 Carried out on all other production anchors, to confirm that the anchors meet the general requirements of the design and specification.

Plus:

Supplementary Extended Creep Tests
 At least two extended tests shall be made on permanent anchors in soils having a Plasticity Index greater than 20.
Performance Tests

To Determine:

- a) whether the anchor has sufficient load carrying capacity,
- b) that the apparent free tendon length has been satisfactorily established,
- c) the magnitude of the residual movement, and
- d) that the rate of creep stabilizes within the specified limits.

Acceptance Criteria:

- 133% of design load
- Minimum > 80% Free length
- Maximum < (Free length + 50% of bond length)
- No absolute criterion, but must be determined to evaluate the elastic movement for calculating “above”

< 1 mm at Test Load during 1 to 10 minutes
< 2 mm at Test Load for a period of 6 to 60 minutes

Cycling loading to: 25%, 50%, 75%, 100%, 120%, 133% (TL) of the design load (DL)

Load is decreased to alignment load (AL) after each cycle

After acceptance, adjust to lock-off load
Graphical Analysis of Performance Test Data

- Elastic Movement
- Residual Movement

Graph showing:
- Line A: 80% Free Length
- Line B: Free Length + 50% Bond Length

Load (DL) vs. Movement

Sept 2003
Proof Tests

To Determine:

a) whether the anchor has sufficient load carrying capacity,

b) that the apparent free tendon length has been satisfactorily established, and

d) that the rate of creep stabilizes within the specified limits.

Acceptance Criteria:

133% of design load

minimum > 80% Free length maximum < (Free length + 50% bond length

< 1 mm at Test Load during 1 to 10 minutes or if this is exceeded
< 2 mm at test Load for a period of 6 to 60 minutes

Incrementally loading to: 25%, 50%, 75%, 100%, 120%, 133%(TL) of the design load(DL)

After acceptance, adjust to lock-off load
Graphical Analysis of Proof Test Data

Elastic Movement

Residual Movement

\(\delta_e\) \(\delta_r\)

0 0.25 0.50 0.75 1.00 1.20 1.33

Load DL

Line A: 80% Free Length
Line B: Free Length + 50% Bond Length

AL (0.10)
Supplementary Extended Creep Tests

To Determine: that there is no indication that future unacceptable movement or creep failure is probable.

A family of creep curves is plotted on a semi-logarithmic chart.

Creep movement < 1 mm at Test load during 1 to 10 minutes or Creep movement < 2 mm at Test load during 6 to 60 minutes

Testing in accordance with the schedule in Table 8.3

Note: Epoxy coated strand itself has a significant value and thus should be accounted for when assessing the creep of the anchor
Special Considerations for Epoxy Coated Strand Anchors

- ASTM A-882 alone is not quality guarantee.
- Inspect strands during fabrication
 - Patch any coating holidays or holes.
- Very abrasive surface causes need to protect men and equipment
- Strand has more curvature memory making handling and fabrication more difficult.
- Coiling very much more difficult due to friction of strands when tendon bent.
- Handling of anchors may cause coating damage.
- Efficient patching methods needed.
- Stressing has extra requirements and must be very disciplined. Little tolerance for variation.
- Slippages have occurred causing rejected anchors.
5. As Built Records

Then:
- Focus on drilling logs via cores
- Grout strength data (cubes)
- Load-extension data

Now: Much enhanced, e.g.,
- MWD
- Fluid grout tests
- Stressing data
- [Computers help]
6. Overview

<table>
<thead>
<tr>
<th></th>
<th>THEN</th>
<th>NOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical design</td>
<td>Same – equally conservative</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Drilling</td>
<td>Investigation</td>
<td>Production</td>
</tr>
<tr>
<td>■ Water pressure testing</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>■ Grouting</td>
<td></td>
<td>Better material knowledge</td>
</tr>
<tr>
<td>■ Tendon</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Stressing and Testing</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>As-Built Records</td>
<td></td>
<td>Equally good, but quality reflects construction process</td>
</tr>
</tbody>
</table>